Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.165
Filtrar
1.
J Biol Chem ; 299(12): 105411, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918804

RESUMO

O-GlcNAc is a common modification found on nuclear and cytoplasmic proteins. Determining the catalytic mechanism of the enzyme O-GlcNAcase (OGA), which removes O-GlcNAc from proteins, enabled the creation of potent and selective inhibitors of this regulatory enzyme. Such inhibitors have served as important tools in helping to uncover the cellular and organismal physiological roles of this modification. In addition, OGA inhibitors have been important for defining the augmentation of O-GlcNAc as a promising disease-modifying approach to combat several neurodegenerative diseases including both Alzheimer's disease and Parkinson's disease. These studies have led to development and optimization of OGA inhibitors for clinical application. These compounds have been shown to be well tolerated in early clinical studies and are steadily advancing into the clinic. Despite these advances, the mechanisms by which O-GlcNAc protects against these various types of neurodegeneration are a topic of continuing interest since improved insight may enable the creation of more targeted strategies to modulate O-GlcNAc for therapeutic benefit. Relevant pathways on which O-GlcNAc has been found to exert beneficial effects include autophagy, necroptosis, and processing of the amyloid precursor protein. More recently, the development and application of chemical methods enabling the synthesis of homogenous proteins have clarified the biochemical effects of O-GlcNAc on protein aggregation and uncovered new roles for O-GlcNAc in heat shock response. Here, we discuss the features of O-GlcNAc in neurodegenerative diseases, the application of inhibitors to identify the roles of this modification, and the biochemical effects of O-GlcNAc on proteins and pathways associated with neurodegeneration.


Assuntos
Doença de Alzheimer , N-Acetilglucosaminiltransferases , Doença de Parkinson , Humanos , Acetilglucosamina/metabolismo , Doença de Alzheimer/enzimologia , Precursor de Proteína beta-Amiloide/metabolismo , beta-N-Acetil-Hexosaminidases/genética , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/metabolismo , Doença de Parkinson/enzimologia , Processamento de Proteína Pós-Traducional , Inibidores Enzimáticos/farmacologia
2.
J Biol Chem ; 299(6): 104794, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37164155

RESUMO

Clinical development of γ-secretases, a family of intramembrane cleaving proteases, as therapeutic targets for a variety of disorders including cancer and Alzheimer's disease was aborted because of serious mechanism-based side effects in the phase III trials of unselective inhibitors. Selective inhibition of specific γ-secretase complexes, containing either PSEN1 or PSEN2 as the catalytic subunit and APH1A or APH1B as supporting subunits, does provide a feasible therapeutic window in preclinical models of these disorders. We explore here the pharmacophoric features required for PSEN1 versus PSEN2 selective inhibition. We synthesized a series of brain penetrant 2-azabicyclo[2,2,2]octane sulfonamides and identified a compound with low nanomolar potency and high selectivity (>250-fold) toward the PSEN1-APH1B subcomplex versus PSEN2 subcomplexes. We used modeling and site-directed mutagenesis to identify critical amino acids along the entry part of this inhibitor into the catalytic site of PSEN1. Specific targeting one of the different γ-secretase complexes might provide safer drugs in the future.


Assuntos
Secretases da Proteína Precursora do Amiloide , Complexos Multiproteicos , Presenilina-1 , Sulfonamidas , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Presenilina-1/antagonistas & inibidores , Presenilina-1/metabolismo , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Sulfonamidas/farmacologia , Especificidade por Substrato , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/metabolismo
3.
Eur J Med Chem ; 245(Pt 1): 114894, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36343411

RESUMO

Despite innumerable efforts to develop effective therapeutics, it is difficult to achieve breakthrough treatments for Alzheimer's disease (AD), and the main reason is probably the absence of a clear target. Here, we reveal c-Jun N-terminal kinase 3 (JNK3), a protein kinase explicitly expressed in the brain and involved in neuronal apoptosis, with a view toward providing effective treatment for AD. For many years, we have worked on JNK3 inhibitors and have discovered 2-aryl-1-pyrimidinyl-1H-imidazole-5-yl acetonitrile-based JNK3 inhibitors with superb potency (IC50 < 1.0 nM) and excellent selectivity over other protein kinases including isoforms JNK1 (>300 fold) and JNK2 (∼10 fold). Based on in vitro biological activity and DMPK properties, the lead compounds were selected for further in vivo studies. We confirmed that repeat administration of JNK3 inhibitors improved cognitive memory in APP/PS1 and the 3xTg mouse model. Overall, our results show that JNK3 could be a potential target protein for AD.


Assuntos
Doença de Alzheimer , Imidazóis , Proteína Quinase 10 Ativada por Mitógeno , Inibidores de Proteínas Quinases , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Apoptose/efeitos dos fármacos , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Proteína Quinase 10 Ativada por Mitógeno/antagonistas & inibidores , Isoformas de Proteínas/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Modelos Animais de Doenças
4.
Eur J Med Chem ; 244: 114837, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36265279

RESUMO

The toxic pyroglutamate form of amyloid-ß (pE-Aß) is important for the pathogenesis of early Alzheimer's disease (AD); therefore, reducing pE-Aß by inhibiting glutaminyl cyclase (QC) provides a promising strategy for developing disease-modifying AD drugs. In this study, potent and selective QC inhibitors with desirable drug-like properties were discovered by replacing the 3,4-dimethoxyphenyl group in a QC inhibitor with a bioisosteric indazole surrogate. Among them, 3-methylindazole-6-yl and 3-methylindazole-5-yl derivatives with an N-cyclohexylurea were identified as highly potent inhibitors with IC50 values of 3.2 nM and 2.3 nM, respectively, both of which were approximately 10-fold more potent than varoglutamstat. In addition, the three inhibitors significantly reduced pE-Aß3-40 levels in an acute animal model after intracerebroventricular (icv) injection and were selective for hQC. Further in vitro pharmacokinetic and toxicity studies, including those investigating cytotoxicity, hERG inhibition, blood-brain barrier (BBB) permeability and metabolic stability, indicated that N-(3-methylindazole-6-yl)-N'-(cyclohexyl)urea derivative exhibited the most promising efficacy, selectivity and drug-like profile; thus, it was evaluated for its in vivo efficacy in an AD model.


Assuntos
Doença de Alzheimer , Aminoaciltransferases , Descoberta de Drogas , Indazóis , Animais , Humanos , Doença de Alzheimer/enzimologia , Aminoaciltransferases/antagonistas & inibidores , Aminoaciltransferases/química , Peptídeos beta-Amiloides/metabolismo , Indazóis/química , Indazóis/farmacologia
5.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806318

RESUMO

Increasing evidence implicates endothelial dysfunction in the pathogenesis of Alzheimer's disease (AD). Nitric oxide (NO) derived from endothelial NO synthase (eNOS) is essential in maintaining cerebrovascular function and can modulate the production and clearance of amyloid beta (Aß). APPswe/PSdE1 (APP/PS1) mice display age-related Aß accumulation and memory deficits. In order to make the model more clinically relevant with an element of endothelial dysfunction, we generated APP/PS1/eNOS+/- mice by crossing complete eNOS deficient (eNOS-/-) mice and APP/PS1 mice. APP/PS1/eNOS+/- mice at 8 months of age displayed a more severe spatial working memory deficit relative to age-matched APP/PS1 mice. Moreover, immunohistochemistry and immunoblotting revealed significantly increased Aß plaque load in the brains of APP/PS1/eNOS+/- mice, concomitant with upregulated BACE-1 (hence increased Aß production), downregulated insulin-degrading enzyme (hence reduced Aß clearance) and increased immunoreactivity and expression of microglia. The present study, for the first time, demonstrated that partial eNOS deficiency exacerbated behavioral dysfunction, Aß brain deposition, and microglial pathology in APP/PS1 mice, further implicating endothelial dysfunction in the pathogenesis of AD. The present findings also provide the scientific basis for developing preventive and/or therapeutic strategies by targeting endothelial dysfunction.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Óxido Nítrico Sintase Tipo III , Doença de Alzheimer/enzimologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Disfunção Cognitiva/enzimologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Camundongos , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo III/deficiência , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Placa Amiloide/metabolismo , Presenilina-1/metabolismo
6.
Biochem Pharmacol ; 201: 115071, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525328

RESUMO

Despite large investments by industry and governments, no disease-modifying medications for the treatment of patients with Alzheimer's disease (AD) have been found. The failures of various clinical trials indicate the need for a more in-depth understanding of the pathophysiology of AD and for innovative therapeutic strategies for its treatment. Here, we review the rational for targeting IP3 signaling, cytosolic calcium dysregulation, phosphodiesterases (PDEs), and secondary messengers like cGMP and cAMP, as well as their correlations with the pathophysiology of AD. Various drugs targeting these signaling cascades are still in pre-clinical and clinical trials which support the ideas presented in this article. Further, we describe different molecular mechanisms and medications currently being used in various pre-clinical and clinical trials involving IP3/Ca+2 signaling. We also highlight various isoforms, as well as the functions and pharmacology of the PDEs broadly expressed in different parts of the brain and attempt to unravel the potential benefits of PDE inhibitors for use as novel medications to alleviate the pathogenesis of AD.


Assuntos
Doença de Alzheimer , Sinalização do Cálcio , Receptores de Inositol 1,4,5-Trifosfato , Diester Fosfórico Hidrolases , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Sinalização do Cálcio/efeitos dos fármacos , GMP Cíclico/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Terapia de Alvo Molecular , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/uso terapêutico , Diester Fosfórico Hidrolases/metabolismo , Transdução de Sinais
7.
J Biol Chem ; 298(6): 101911, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35398353

RESUMO

Neurotoxic amyloid ß-peptides are thought to be a causative agent of Alzheimer's disease in humans. The production of amyloid ß-peptides from amyloid precursor protein (APP) could be diminished by enhancing α-processing; however, the physical interactions between APP and α-secretases are not well understood. In this study, we employed super-resolution light microscopy to examine in cell-free plasma membranes the abundance and association of APP and α-secretases ADAM10 (a disintegrin and metalloproteinase) and ADAM17. We found that both secretase molecules localize similarly closely to APP (within ≤50 nm). However, when cross-linking APP with antibodies directed against the GFP tag of APP, in confocal microscopy, we observed that only ADAM10 coaggregated with APP. Furthermore, we mapped the involved protein domain by using APP variants with an exchanged transmembrane segment or lacking cytoplasmic/extracellular domains. We identified that the transmembrane domain of APP is required for association with α-secretases and, as analyzed by Western blot, for α-processing. We propose that the transmembrane domain of APP interacts either directly or indirectly with ADAM10, but not with ADAM17, explaining the dominant role of ADAM10 in α-processing of APP. Further understanding of this interaction may facilitate the development of a therapeutic strategy based on promoting APP cleavage by α-secretases.


Assuntos
Proteína ADAM10 , Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Precursor de Proteína beta-Amiloide , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Domínios Proteicos
8.
Neurobiol Dis ; 169: 105737, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35452786

RESUMO

Altered mitochondrial DNA (mtDNA) occurs in neurodegenerative disorders like Alzheimer's disease (AD); how mtDNA synthesis is linked to neurodegeneration is poorly understood. We previously discovered Nutrient-induced Mitochondrial Activity (NiMA), an inter-organelle signaling pathway where nutrient-stimulated lysosomal mTORC1 activity regulates mtDNA replication in neurons by a mechanism sensitive to amyloid-ß oligomers (AßOs), a primary factor in AD pathogenesis (Norambuena et al., 2018). Using 5-ethynyl-2'-deoxyuridine (EdU) incorporation into mtDNA of cultured neurons, along with photoacoustic and mitochondrial metabolic imaging of cultured neurons and mouse brains, we show these effects being mediated by mTORC1-catalyzed T40 phosphorylation of superoxide dismutase 1 (SOD1). Mechanistically, tau, another key factor in AD pathogenesis and other tauopathies, reduced the lysosomal content of the tuberous sclerosis complex (TSC), thereby increasing NiMA and suppressing SOD1 activity and mtDNA synthesis. AßOs inhibited these actions. Dysregulation of mtDNA synthesis was observed in fibroblasts derived from tuberous sclerosis (TS) patients, who lack functional TSC and elevated SOD1 activity was also observed in human AD brain. Together, these findings imply that tau and SOD1 couple nutrient availability to mtDNA replication, linking mitochondrial dysfunction to AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Superóxido Dismutase-1 , Esclerose Tuberosa , Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Mitocôndrias/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Esclerose Tuberosa/enzimologia , Esclerose Tuberosa/genética
9.
Int J Biol Sci ; 18(2): 693-706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35002518

RESUMO

The aggregation of amyloid-ß (Aß) peptides into oligomers and fibrils is a key pathological feature of Alzheimer's disease (AD). An increasing amount of evidence suggests that oligomeric Aß might be the major culprit responsible for various neuropathological changes in AD. Death-associated protein kinase 1 (DAPK1) is abnormally elevated in brains of AD patients and plays an important role in modulating tau homeostasis by regulating prolyl isomerase Pin1 phosphorylation. However, it remains elusive whether and how Aß species influence the function of DAPK1, and whether this may further affect the function and phosphorylation of tau in neurons. Herein, we demonstrated that Aß aggregates (both oligomers and fibrils) prepared from synthetic Aß42 peptides were able to upregulate DAPK1 protein levels and thereby its function through heat shock protein 90 (HSP90)-mediated protein stabilization. DAPK1 activation not only caused neuronal apoptosis, but also phosphorylated Pin1 at the Ser71 residue, leading to tau accumulation and phosphorylation at multiple AD-related sites in primary neurons. Both DAPK1 knockout (KO) and the application of a specific DAPK1 inhibitor could effectively protect primary neurons against Aß aggregate-induced cell death and tau dysregulation, corroborating the critical role of DAPK1 in mediating Aß aggregation-induced neuronal damage. Our study suggests a mechanistic link between Aß oligomerization and tau hyperphosphorylation mediated by DAPK1, and supports the role of DAPK1 as a promising target for early intervention in AD.


Assuntos
Doença de Alzheimer/enzimologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/enzimologia , Proteínas Quinases Associadas com Morte Celular/metabolismo , Neurônios/enzimologia , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Apoptose/genética , Encéfalo/patologia , Proteínas Quinases Associadas com Morte Celular/deficiência , Proteínas Quinases Associadas com Morte Celular/genética , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Neurônios/patologia , Fragmentos de Peptídeos/genética , Fosforilação , Proteínas tau/genética , Proteínas tau/metabolismo
10.
Anal Chem ; 94(2): 1491-1497, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34985875

RESUMO

An amyloid-beta peptide (Aß) is generally believed to be a pathological marker of Alzheimer's disease (AD), but it is still of great significance to explore the upstream and downstream relationship of Aß in AD. It is previously reported that c-Abl, a nonreceptor tyrosine kinase, can be activated by Aß, but the interaction between Aß and c-Abl is still unknown. Herein, an extended-gate field-effect transistor (EG-FET)-based sensor has been developed to monitor the level of c-Abl with high sensitivity and selectivity. Our peptide-functionalized EG-FET sensor as the signal transducer can follow c-Abl activity with electron transfer by its specific phosphorylation. The sensor presents a good linear correlation over c-Abl concentrations of 1 pg/mL to 3.05 µg/mL. The sensor was successfully applied to quantify c-Abl activity in the brain tissue of AD transgenic mice, and the interaction between c-Abl and Aß in AD mice was explored by administering the c-Abl inhibitor (imatinib) and the agonist (DPH). Our work is expected to provide an important reference for early diagnosis and treatment of AD.


Assuntos
Doença de Alzheimer , Técnicas Biossensoriais , Proteínas Proto-Oncogênicas c-abl , Transistores Eletrônicos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/enzimologia , Peptídeos beta-Amiloides/metabolismo , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Fosforilação , Proteínas Proto-Oncogênicas c-abl/análise , Proteínas Proto-Oncogênicas c-abl/metabolismo
11.
Biochim Biophys Acta Mol Cell Res ; 1869(3): 119164, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34699873

RESUMO

Alzheimer's disease (AD) is the most common form of dementia, however incurable so far. It is widely accepted that aggregated amyloid ß (Aß) peptides play a crucial role for the pathogenesis of AD, as they cause neurotoxicity and deposit as so-called Aß plaques in AD patient brains. Aß peptides derive from the amyloid precursor protein (APP) upon consecutive cleavage at the ß- and γ-secretase site. Hence, mutations in the APP gene are often associated with autosomal dominant inherited AD. Almost thirty years ago, two mutations at the ß-secretase site were observed in two Swedish families (termed Swedish APP (APPswe) mutations), which led to early-onset AD. Consequently, APPswe was established in almost every common AD mouse model, as it contributes to early Aß plaque formation and cognitive impairments. Analyzing these APPswe-based mouse models, the aspartyl protease BACE1 has been evolving as the prominent ß-secretase responsible for Aß release in AD and as the most important therapeutic target for AD treatment. However, with respect to ß-secretase processing, the very rare occurring APPswe variant substantially differs from wild-type APP. BACE1 dominates APPswe processing resulting in the release of Aß1-x, whereas N-terminally truncated Aß forms are scarcely generated. However, these N-terminally truncated Aß species such as Aß2-x, Aß3-x and Aß4-x are elevated in AD patient brains and exhibit an increased potential to aggregate compared to Aß1-x peptides. Proteases such as meprin ß, cathepsin B and ADAMTS4 were identified as alternative ß-secretases being capable of generating these N-terminally truncated Aß species from wild-type APP. However, neither meprin ß nor cathepsin B are capable of generating N-terminally truncated Aß peptides from APPswe. Hence, the role of BACE1 for the Aß formation during AD might be overrepresented through the excessive use of APPswe mouse models. In this review we critically discuss the consideration of BACE1 as the most promising therapeutic target. Shifting the focus of AD research towards alternative ß secretases might unveil promising alternatives to BACE1 inhibitors constantly failing in clinical trials due to ineffectiveness and harmful side effects.


Assuntos
Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Modelos Animais de Doenças , Secretases da Proteína Precursora do Amiloide/genética , Animais , Humanos , Camundongos Transgênicos , Suécia
12.
J Biochem ; 170(6): 729-738, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34523681

RESUMO

Lemur tail kinase 1 (LMTK1), previously called apoptosis-associated tyrosine kinase (AATYK), is an endosomal Ser/Thr kinase. We recently reported that LMTK1 regulates axon outgrowth, dendrite arborization and spine formation via Rab11-mediated vesicle transport. Rab11, a small GTPase regulating recycling endosome trafficking, is shown to be associated with late-onset Alzheimer's disease (LOAD). In fact, genome-wide association studies identified many proteins regulating vesicle transport as risk factors for LOAD. Furthermore, LMTK1 has been reported to be a risk factor for frontotemporal dementia. Then, we hypothesized that LMTK1 contributes to AD development through vesicle transport and examined the effect of LMTK1 on the cellular localization of AD-related proteins, amyloid precursor protein (APP) and ß-site APP cleaving enzyme 1 (BACE1). The ß-cleavage of APP by BACE1 is the initial and rate-limiting step in Aß generation. We found that LMTK1 accumulated BACE1, but not APP, to the perinuclear endosomal compartment, whereas the kinase-negative(kn) mutant of LMTK1A did not. The ß-C-terminal fragment was prone to increase under overexpression of LMTK1A kn. Moreover, the expression level of LMTK1A was reduced in AD brains. These results suggest the possibility that LMTK1 is involved in AD development through the regulation of the proper endosomal localization of BACE1.


Assuntos
Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Endossomos/enzimologia , Proteínas Tirosina Quinases/metabolismo , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Ácido Aspártico Endopeptidases/genética , Células CHO , Células COS , Chlorocebus aethiops , Cricetulus , Endossomos/genética , Células HEK293 , Humanos , Proteínas Tirosina Quinases/genética
13.
Cell Rep ; 37(10): 110102, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879266

RESUMO

Toxic amyloid beta (Aß) species cause synaptic dysfunction and neurotoxicity in Alzheimer's disease (AD). As of yet, however, there are no reported regulators for gamma-secretase, which links a risky environment to amyloid accumulation in AD. Here, we report that pyruvate kinase M2 (PKM2) is a positive regulator of gamma-secretase under hypoxia. From a genome-wide functional screen, we identify PKM2 as a gamma-secretase activator that is highly expressed in the brains of both patients and murine models with AD. PKM2 regulates Aß production and the amount of active gamma-secretase complex by changing the gene expression of aph-1 homolog. Hypoxia induces PKM2 expression, thereby promoting gamma-secretase activity. Moreover, transgenic expression of PKM2 in 3xTg AD model mice enhances hippocampal production of Aß and exacerbates the impairment of spatial and recognition memory. Taken together, these findings indicate that PKM2 is an important gamma-secretase regulator that promotes Aß production and memory impairment under hypoxia.


Assuntos
Doença de Alzheimer/enzimologia , Comportamento Animal , Encéfalo/enzimologia , Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Memória , Piruvato Quinase/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/fisiopatologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Estudos de Casos e Controles , Bases de Dados Genéticas , Modelos Animais de Doenças , Endopeptidases/genética , Feminino , Regulação Enzimológica da Expressão Gênica , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Piruvato Quinase/genética , Reconhecimento Psicológico , Transdução de Sinais , Memória Espacial , Hormônios Tireóideos/genética , Hormônios Tireóideos/metabolismo , Transcrição Gênica
14.
Bioengineered ; 12(2): 12678-12690, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34818971

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease. Multiple reports have elucidated that microRNAs are promising biomarkers for AD diagnosis and treatment. Herein, the effect of miR-191-5p on microglial cell injury and the underlying mechanism were explored. APP/PS1 transgenic mice were utilized to establish mouse model of AD. Amyloid-ß protein 1-42 (Aß1-42)-treated microglia were applied to establish in vitro cell model of AD. MiR-191-5p expression in hippocampus and microglia was measured by reverse transcription quantitative polymerase chain reaction. The viability and apoptosis of microglia were evaluated by Cell Counting Kit-8 assays and flow cytometry analyses, respectively. The binding relationship between miR-191-5p and its downstream target mitogen-activated protein kinase kinase kinase 12 (Map3k12) was determined by luciferase reporter assays. Pathological degeneration of hippocampus was tested using hematoxylin-eosin staining and Nissl staining. Aß expression in hippocampus was examined via immunohistochemistry. In this study, miR-191-5p was downregulated in Aß1-42-stimulated microglia and hippocampal tissues of APP/PS1 mice. MiR-191-5p overexpression facilitated cell viability and inhibited apoptosis rate of Aß1-42-treated microglia. Mechanically, miR-191-5p targeted Map3k12 3'-untranslated region to downregulate Map3k12 expression. MiR-191-5p inhibited Aß1-42-induced microglial cell injury and inactivated the MAPK signaling by downregulating Map3k12. Overall, miR-191-5p alleviated Aß1-42-induced microglia cell injury by targeting Map3k12 to inhibit the MAPK signaling pathway in microglia.


Assuntos
Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Microglia/enzimologia , Microglia/patologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/toxicidade , Animais , Regulação para Baixo/genética , Hipocampo/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade
15.
Biomed Pharmacother ; 144: 112271, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34619494

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and cognitive impairment. ß-Amyloid (Aß) is widely accepted as the main neurotoxin that triggers mitochondrial-associated oxidative stress, leading to neuronal death in AD. Following our preliminary research on the neuroprotective effects of the brown alga Sargassum serratifolium, its major compounds, including sargaquinoic acid, sargahydroquinoic acid (SHQA), and sargachromenol, were investigated to elucidate the antioxidant and anti-apoptotic properties of Aß25-35-stimulated PC12 cells. SHQA exhibited the most potent effect on Aß-induced mitochondrial-associated oxidative stress and apoptosis. In addition, the compound enhanced the expression and translocation of nuclear factor-E2-related factor 2 (Nrf2), while reducing the expression of cytoplasmic Kelch-like ECH-associated protein 1 (Keap1). Furthermore, the compound upregulated the expression of Nrf2-regulated antioxidant enzymes, including HO-1, NQO1, GCLc, GCLm, and TrxR1. Co-treatment with SHQA and LY294002, a specific PI3K inhibitor, inhibited nuclear Nrf2 expression and Akt phosphorylation, demonstrating that SHQA-mediated Nrf2 activation was directly associated with the PI3K/Akt signaling pathway. Mechanistic studies indicate that activation of the PI3K/Akt/Nrf2 pathway is the molecular basis for the neuroprotective effects of SHQA. In silico docking simulation revealed that SHQA established specific interactions with the key amino acid residues of PI3K, Akt, and Nrf2-Keap1 via hydrogen bonding and van der Waals interactions, which may affect the biological capacities of target markers. Overall, this is the first report of this novel mechanism of SHQA as a Nrf2 activator against Aß-mediated oxidative damage, suggesting that the compound might be a potential agent for the prevention of AD.


Assuntos
Alcenos/farmacologia , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/toxicidade , Antioxidantes/farmacologia , Benzoquinonas/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/toxicidade , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Animais , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Simulação de Acoplamento Molecular , Neurônios/enzimologia , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Fosforilação , Ratos , Transdução de Sinais
16.
Int J Mol Sci ; 22(20)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34681851

RESUMO

Alzheimer's Disease (AD) is the most common neurodegenerative disorder in our society, as the population ages, its incidence is expected to increase in the coming decades. The etiopathology of this disease still remains largely unclear, probably because of the highly complex and multifactorial nature of AD. However, the presence of mitochondrial dysfunction has been broadly described in AD neurons and other cellular populations within the brain, in a wide variety of models and organisms, including post-mortem humans. Mitochondria are complex organelles that play a crucial role in a wide range of cellular processes, including bioenergetics. In fact, in mammals, including humans, the main source of cellular ATP is the oxidative phosphorylation (OXPHOS), a process that occurs in the mitochondrial electron transfer chain (ETC). The last enzyme of the ETC, and therefore the ulterior generator of ATP, is the ATP synthase. Interestingly, in mammalian cells, the ATP synthase can also degrade ATP under certain conditions (ATPase), which further illustrates the crucial role of this enzyme in the regulation of cellular bioenergetics and metabolism. In this collaborative review, we aim to summarize the knowledge of the presence of dysregulated ATP synthase, and of other components of mammalian mitochondrial bioenergetics, as an early event in AD. This dysregulation can act as a trigger of the dysfunction of the organelle, which is a clear component in the etiopathology of AD. Consequently, the pharmacological modulation of the ATP synthase could be a potential strategy to prevent mitochondrial dysfunction in AD.


Assuntos
Doença de Alzheimer/metabolismo , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/enzimologia , Animais , Metabolismo Energético , Humanos , Fosforilação Oxidativa
17.
Int Immunopharmacol ; 100: 108083, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34478946

RESUMO

Alzheimer's disease (AD) is classified pathologically as a progressive neurological disorder associated with memory decline. The study was designed to assess the underlying molecular signaling involved in the neuroprotective effect of the 2-(hydroxyl-(2-nitrophenyl)methyl)cyclopentanone (2NCP) as a novel therapeutic agent for AD. In this connection, in vitro cholinesterases inhibitory and antioxidant activities were investigated. In vivo studies were carried out on a well-known 5xFAD mice model in different behavioural models such as light/dark box,balance beam, rotarod, elevated plus maze (EPM),novel object recognition (NOR), paddling Y-maze, and Morris water maze (MWM) tests. Hippocampus (HC) and frontal cortex (FC) homogenates were examined for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities, 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals, glutathione S-transferase (GST), glutathione (GSH), and catalase. Further, we examined the expression of inflammatory cytokines and Nrf2 in the HC and FC through RT-PCR. Computational studies were conducted to predict the binding mode of the 2NCP with target sites of nuclear factor-κB (NF-κB) and cholinesterases. The findings of in vitro assays revealed that the IC50 values of the 2NCP against AChE and BChE were 17 and 23 µg/ml respectively. DPPH antioxidant assay displayed an IC50 value for the 2NCP was 62 µg/ml. Whereas, theex vivo study depicted that the activities of AChE and BChEwere significantly reduced. Moreover, free radicals load, GSH level, catalase and GST activities were significantly declined. Furthermore, in vivostudies showed that the 2NCP treated animals exhibited gradual memory improvement and improved motor functions. RT-PCR study revealed that mRNA levels of the inflammatory mediators (IL-1ß, IL-6, TNF-α) were significantly reduced, while the expression of antioxidant Nrf2 was significantly increased.The molecular docking studies further confirmed that the 2NCP showed excellent binding affinities for NF-κB and cholinesterases. Taken together, the 2NCP improves spatial memory and learning, short- and long-term memory,markedly inhibits cholinesterases, reduced neuroinflammation, and mitigated oxidative stress in the 5xFAD mice; hence the 2NCP may be a potential candidate for the management of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Doenças Neuroinflamatórias/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Memória Espacial/efeitos dos fármacos , Acetilcolinesterase/sangue , Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Animais , Encéfalo/enzimologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Feminino , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/sangue , Mediadores da Inflamação/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Transgênicos , Simulação de Acoplamento Molecular , Doenças Neuroinflamatórias/enzimologia , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais
18.
Life Sci ; 285: 119964, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34537230

RESUMO

AIMS: Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder characterized by declined cognitive functions in the elderly. Quercetin (Q) is a potent flavonol that has neuroprotective effects on AD derangements. The present study aimed to evaluate the α-secretase stimulatory function of Q through activation of ADAM10 and ADAM17 gene expression in the aluminum chloride (AlCl3)-induced AD rat model. MAIN METHODS: After induction of AD in rats by oral administration of AlCl3 (50 mg/kg) for 28 days, the Q doses (25 and 50 mg/kg) were orally administered for 28 days. Rats performed the behavioral assessments during the last week of the treatment period. Hippocampi were harvested for assessments of the neurochemical and histopathological examinations and gene expression analysis. KEY FINDINGS: Administration of Q to AlCl3-induced AD rat model attenuated behavioral deficits, improved cholinergic and dopaminergic dysfunctions, and diminished insoluble amyloid ß (Aß) plaques aggregation in the hippocampus. These ameliorative effects of Q were associated with down-regulation of APP, BACE1, APH1, and PSEN1 and up-regulation of ADAM10 and ADAM17 gene expression levels in the hippocampus. SIGNIFICANCE: The present study suggests that Q might attenuate neurotransmission impairment, Aß aggregation in the hippocampus, and behavioral deficits in the AlCl3-induce AD rat model via up-regulating ADAM 10 and ADAM 17 (α-secretase) gene expression, leading to the inhibition of the amyloidogenic pathway. In support of the present finding, we suggest that ADAM10 and ADAM17 activation might be potential drug targets for AD to counteract the Aß aggregation and cognitive deterioration.


Assuntos
Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Antioxidantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Quercetina/farmacologia , Proteína ADAM10/genética , Proteína ADAM17/genética , Cloreto de Alumínio , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Antioxidantes/uso terapêutico , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Masculino , Fármacos Neuroprotetores/uso terapêutico , Quercetina/uso terapêutico , Ratos , Ratos Wistar
19.
Toxicol Appl Pharmacol ; 429: 115697, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34428446

RESUMO

Sporadic Alzheimer's disease (SAD) is a slowly progressive neurodegenerative disorder. This study aimed to investigate neuroprotective potential of tadalafil (TAD) and bergapten (BG) in SAD-induced cognitive impairment in mice. SAD was induced by single injection of streptozotocin (STZ; 3 mg/kg, ICV). STZ resulted in AD-like pathologies including Aß deposition, tau aggregation, impaired insulin and Wnt/ß-catenin signaling, as well as autophagic dysfunction and neuroinflammation. Administration of TAD or BG at doses of 20 and 25 mg/kg, respectively, for 21 consecutive days attenuated STZ-induced hippocampal insult, preserved neuronal integrity, and improved cognitive function in the Morris water maze and object recognition tests paralleled by reduction in Aß expression by 79 and 89% and tau hyperphosphorylation by 60 and 61%, respectively. TAD and BG also enhanced protein expression of pAkt, pGSK-3ß, beclin-1 and methylated protein phosphatase 2A (PP2A) and gene expression of cyclin D1, while raised BDNF immunoreactivity. Furthermore, TAD and BG boosted hippocampal levels of cGMP, PKG, Wnt3a, and AMPK and reduced expression of ß-catenin and mTOR by 74% and 51%, respectively. TAD and BG also halted neuroinflammation by reducing IL-23 and IL-27 levels, as well as protein expression of NF-κB by 62% & 61%, respectively. In conclusion, this study offers novel insights on the neuroprotective effects of TAD or BG in the management of SAD as evidenced by improved cognitive function and histological architecture. This could be attributed to modulation of the crosstalk among PI3K/Akt/GSK-3ß, PP2A, mTOR/autophagy, cGMP/PKG, and Wnt/ß-catenin signaling cascades and mitigation of neuroinflammation.


Assuntos
5-Metoxipsoraleno/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Doença de Alzheimer/prevenção & controle , Anti-Inflamatórios/farmacologia , Hipocampo/efeitos dos fármacos , Doenças Neuroinflamatórias/prevenção & controle , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Tadalafila/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/enzimologia , Doença de Alzheimer/imunologia , Peptídeos beta-Amiloides/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Hipocampo/enzimologia , Hipocampo/imunologia , Masculino , Camundongos , Teste do Labirinto Aquático de Morris , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/enzimologia , Doenças Neuroinflamatórias/imunologia , Teste de Campo Aberto , Fosforilação , Estreptozocina , Proteínas tau/metabolismo
20.
Mol Neurobiol ; 58(11): 5986-6005, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34432266

RESUMO

Fyn is a non-receptor tyrosine kinase belonging to the Src family of kinases (SFKs) which has been implicated in several integral functions throughout the central nervous system (CNS), including myelination and synaptic transmission. More recently, Fyn dysfunction has been associated with pathological processes observed in neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD) and Parkinson's disease (PD). Neurodegenerative diseases are amongst the leading cause of death and disability worldwide and, due to the ageing population, prevalence is predicted to rise in the coming years. Symptoms across neurodegenerative diseases are both debilitating and degenerative in nature and, concerningly, there are currently no disease-modifying therapies to prevent their progression. As such, it is important to identify potential new therapeutic targets. This review will outline the role of Fyn in normal/homeostatic processes, as well as degenerative/pathological mechanisms associated with neurodegenerative diseases, such as demyelination, pathological protein aggregation, neuroinflammation and cognitive dysfunction.


Assuntos
Proteínas do Tecido Nervoso/fisiologia , Doenças Neurodegenerativas/enzimologia , Proteínas Proto-Oncogênicas c-fyn/fisiologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Sistema Nervoso Central/enzimologia , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Humanos , Terapia de Alvo Molecular , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/enzimologia , Bainha de Mielina/fisiologia , Proteínas do Tecido Nervoso/efeitos dos fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/fisiopatologia , Oligodendroglia/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/enzimologia , Doença de Parkinson/fisiopatologia , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Proteínas PrPC/metabolismo , Proteínas Proto-Oncogênicas c-fyn/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-fyn/efeitos dos fármacos , Piridinas/farmacologia , Piridinas/uso terapêutico , Receptores de N-Metil-D-Aspartato/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T , Subpopulações de Linfócitos T/enzimologia , Subpopulações de Linfócitos T/imunologia , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...